

Designing work for humans in all their complexity: physical, cognitive, and social

Σχεδιασμός εργασίας για περίπλοκες ανάγκες του ανθρώπου: φυσικές, γνωστικές και κοινωνικές

Ilias BANOUTSOS
Ergonomist
Founder of Ergonomia SA

Contents

- The Evolution o Ergonomics
- Key Drivers of Change in Ergonomics
- Emerging Topics and Opportunities
- Challenges ahead

The Evolution of Ergonomics

1940s-1970s-1980s-2010s-1990s-2000s 2000s-2010s 1960s 1980s 1990s **Today** Human-**Organizational &** Industrial & Cognitive Digital & Human-Contemporary & machine Occupational **Ergonomics Macroergonomics Technology Emerging** interaction **Ergonomics** Integration **Ergonomics** Focus: Focus: Focus: Focus: Focus: Focus: worker safety mental processes work systems digitalization human-centered early military & industrial comfort in system team dynamics automation design in complex productivity • inclusive design application operation socio-technical digital ecosystems design for rise of computers well-being and design Key topics: Key topics: and information sustainability human manual Key topics: usability capabilities & systems handling • job design accessibility Key topics: limitations. • posture teamwork human-robot • human-AI Key topics: collaboration workstation • human-computer participatory collaboration (co-Key topics: anthropometry design interaction (HCI) ergonomics bots) remote work musculoskeleta safety culture virtual and decision-making human ergonomics system resilience mental health performance Ldisorders workload augmented reality control and (MSDs) human error • inclusive design exoskeletons sustainable design display design fatigue interface usability operator fatigue reduction smart systems

Key Drivers of Change in Ergonomics

- Digital Transformation
- Hybrid and Remote Work
- Demographic and Workforce Diversity
- Sustainability and Human-Centered Design

Digital Transformation

Digital transformation encompasses

- Automation,
- Artificial Intelligence (AI), and
- Connected devices
 are changing how we interact with work systems.

New

- cognitive demands,
- information overload, and
- algorithmic management

call for new ergonomic frameworks

Digital Transformation - Example

In logistics and warehouse operations, Al-driven systems now

- assign picking routes and
- monitor worker performance in real time.

While this optimizes efficiency, it may increase cognitive load because workers must

- interpret frequent digital alerts and
- adapt to algorithmic pacing.

A human-factors intervention might involve:

- Simplifying on-screen notifications to reduce information overload,
- Allowing workers to adjust pacing or mute non-critical alerts,
- Training supervisors to use system data for coaching, not control.

Takeaway (food for thought): Digital transformation requires cognitive ergonomics

to ensure humans remain in control of technology — not the other way around.

Hybrid and Remote Work

Flexible workplaces has moved ergonomics beyond the office

- Home setups
- digital collaboration, and
- blurred boundaries between work and life

require holistic approaches that integrate:

- Physical
- · mental, and
- social ergonomics

Hybrid and Remote Work - Example

In post-pandemic corporate environments, many professionals split time between home and office. At home, workstations are often improvised — laptops on kitchen tables, poor lighting, and extended screen time. Meanwhile, digital collaboration tools (e-mails, video calls, chat platforms) create **constant connectivity** and **fatigue**.

Ergonomic approaches:

- Providing remote ergonomic self-assessment tools and virtual coaching.
- Promoting micro-breaks and posture change reminders.
- Establishing policies for "digital quiet hours" (ώρες ψηφιακής ησυχίας) to preserve recovery time.

Take away: Hybrid work expands ergonomics into domestic and digital environments, requiring **holistic strategies** that blend physical, mental, and social dimensions.

Demographic and Workforce Diversity

- Aging workers,
- gender diversity, and
- inclusive design challenges

push ergonomics to consider human capability variability

Designing for all, not for the "average" user.

Demographic and Workforce Diversity – Example

In manufacturing and healthcare,

- the workforce is aging employees over 55 perform physically demanding tasks.
- younger workers bring new expectations about inclusivity and flexibility.

Ergonomic proposals:

- Adjustable workstations to accommodate varying heights and strengths.
- Assistive exoskeletons or lift-assist devices for older workers.
- Inclusive interface design that considers gender, language, and accessibility diversity.

Takeaway: Designing "for all, not for the average" means integrating universal design principles and enabling all workers to participate fully, safely, and with dignity.

Sustainability & Human-Centered Design

Ergonomics aims to sustainable work systems

designing jobs that people can do

- throughout their working lives
- without harm or burnout

Sustainability & Human-Centered Design Example

In a global electronics assembly company,

High labour turnover was linked to repetitive tasks and fatigue.

By redesigning the work process

- rotating tasks,
- optimizing lighting,
- improving micro-break scheduling

the company reduced fatigue and labour turnover by over 20%.

At the same time, introducing **participatory workshops** allowed workers to propose layout changes that improved both efficiency and comfort.

Takeaway: Sustainable design is about **long-term viability**: creating work systems that **maintain productivity and worker health across years, not just shifts**.

Emerging Topics and Opportunities

- Digital Ergonomics / Human–Al Interaction
- Cognitive and Neuro-ergonomics
- Data-Driven Ergonomics
- Participatory and Co-Design Approaches

Digital Ergonomics / Human-Al Interaction

The challenge is how to make AI systems

- transparent,
- trustworthy, and
- supportive

rather than stressful

Digital Ergonomics / Human-Al Interaction Example

In air traffic control and modern control rooms, Al assists operators by predicting potential conflicts.

However, if the interface highlights too many alerts, human trust drops — operators either over-rely or ignore AI recommendations.

Intervention:

Through iterative interface design and usability testing, the alert system was simplified, using **color-coded priority** levels and **concise explanations** of Al reasoning.

The result: reduced mental workload and improved decision accuracy.

Takeaway: All must be **explainable** and **predictable** to strengthen **trust**. Ergonomics ensures that

the "human-Al" team functions as "one intelligent system".

Cognitive Ergonomics and Neuroergonomics

With Cognitive Ergonomics and Neuroergonomics insights from neuroscience are used to design that:

- align with human attention,
- decision-making and
- predict fatigue & stress.

Cognitive and Neuroergonomics - Example

In automotive assembly, wearable EEG (Electroencephalography) and motion sensors were used in pilot studies to detect operator fatigue and stress.

Instead of punishing performance drops, supervisors used data to reorganize shifts and offer recovery breaks.

Takeaway: Neuroergonomic data can improve OSH, provided used ethically and transparently to support people, not monitor them intrusively.

Data-Driven Ergonomics

Wearables and sensors offer new ways to monitor:

- workload,
- posture, and
- fatigue

but

raise ethical and privacy questions

Data-Driven Ergonomics - Example

In large distribution centers, wearable posture sensors monitor

- bending and
- twisting.

When analyzed at team level (not individually),

the data helps redesign

- shelf height and
- lifting procedures

leading to measurable reductions in back strain.

Takeaway: The principle is data for prevention, not for surveillance.

Analytics should guide system redesign, not personal discipline

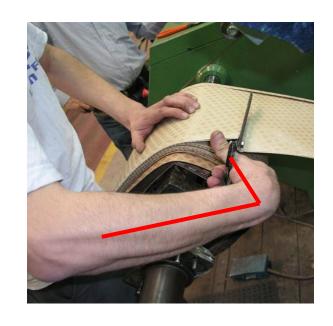
Participatory and Co-Design Approaches

Workers must be

co-creators of ergonomic solutions,

not passive recipients.

Engagement drives both safety and innovation.



Participatory and Co-Design Approaches – Example

Example:

In a transformer winding station, ergonomic work analysis in combination with proposals of the employees helped in a low-cost redesign of the work station resulting in increased productivity and reduced musculoskeletal strain.

Takeaway: Participation isn't a formality. It is the essence of contemporary ergonomics: cocreation ensures solutions are practical, accepted, and sustained.

Challenges Ahead

We must ensure **ergonomics keeps its** *human-centered identity*.

Key challenges include:

- Translating data into actionable insights rather than surveillance.
- Ensuring psychosocial factors get as much attention as physical ones.
- Integrating ergonomics into organizational strategy, not just compliance.
 nevertheless ESG may be an opportunity

Closing

While science & technology gives us powerful tools and solutions, they are not always used for "fitting the task to the man".

Human needs do not always come first

Contemporary ergonomics is about designing work for humans in all their complexity:

- physical,
- cognitive, and
- social.

It's about shaping the future of work where:

technology serves people, not the other way around.

As ergonomists, our mission is to bridge science, empathy, and innovation making sure that every advance in work design enhances both performance and human well-being.

Thank you

